• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
孙笑天,王俊颖,龚莹婷,等. 沙门氏菌智能可视化SEA检测方法的建立[J]. 食品工业科技,2026,47(1):1−11. doi: 10.13386/j.issn1002-0306.2024120036.
引用本文: 孙笑天,王俊颖,龚莹婷,等. 沙门氏菌智能可视化SEA检测方法的建立[J]. 食品工业科技,2026,47(1):1−11. doi: 10.13386/j.issn1002-0306.2024120036.
SUN Xiaotian, WANG Junying, GONG Yingting, et al. Development of An Intelligent Visual SEA Detection Method for Salmonella[J]. Science and Technology of Food Industry, 2026, 47(1): 1−11. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024120036.
Citation: SUN Xiaotian, WANG Junying, GONG Yingting, et al. Development of An Intelligent Visual SEA Detection Method for Salmonella[J]. Science and Technology of Food Industry, 2026, 47(1): 1−11. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024120036.

沙门氏菌智能可视化SEA检测方法的建立

Development of An Intelligent Visual SEA Detection Method for Salmonella

  • 摘要: 目的:建立一种基于链交换等温扩增技术(strand exchange amplification,SEA)与手机端检测程序(application,APP)结合的快速、可视化检测沙门氏菌的方法。方法:优化了富集样品核酸的壳寡糖修饰的二氧化硅膜(chitosan-modified silica membrane,CMSM),设计SEA等温扩增反应的引物,通过中性红显色开发的智能手机APP“沙门智检”,并对方法的特异性、灵敏度、抗干扰能力和人工污染检测能力进行评估。结果:该检测平台对沙门氏菌的检测表现出较强的特异性,基因组DNA灵敏度为10 pg/μL,菌落灵敏度为1.5×102 CFU/mL,对猪肉自然背景菌群的干扰具有较好的抗性,人工污染猪肉样品中的检测灵敏度为3.57×102 CFU/mL。结论:本研究建立的SEA智能可视化检测体系具有快速、灵敏、高特异性及智能可视化检测沙门氏菌的特点,可为食品中沙门氏菌的现场可视化快速筛查提供一种新型简便的策略。

     

    Abstract: Objective: This study aims to develop a rapid and visual method for Salmonella detection by integrating strand exchange amplification (SEA) with a smartphone-based application (APP). Methods: A chitosan-modified silica membrane (CMSM) was optimized for nucleic acid enrichment from samples. Primers for the SEA isothermal amplification reaction were designed, and a smartphone application, "Salmonella Smart Detection," was developed based on neutral red coloration. The specificity, sensitivity, anti-interference capability, and detection performance for artificially contaminated samples were systematically evaluated. Results: The detection platform exhibited high specificity for Salmonella. The detection limit for genomic DNA was 10 pg/μL, while the sensitivity for bacterial colony detection was 1.5×102 CFU/mL. The method demonstrated strong resistance to interference from natural background bacterial flora in pork, achieving a detection sensitivity of 3.57×102 CFU/mL in artificially contaminated pork samples. Conclusion: The intelligent visual detection system based on SEA developed in this study demonstrates rapid performance, high sensitivity, strong specificity, and advanced intelligent visualization capabilities. This system offers an innovative and practical approach for on-site visual screening of Salmonella in food products.

     

/

返回文章
返回