• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
雷一铭,李佳琪,毕晟赟,等. 超高压处理对豌豆蛋白物化特性的影响[J]. 食品工业科技,2025,46(24):1−9. doi: 10.13386/j.issn1002-0306.2024120214.
引用本文: 雷一铭,李佳琪,毕晟赟,等. 超高压处理对豌豆蛋白物化特性的影响[J]. 食品工业科技,2025,46(24):1−9. doi: 10.13386/j.issn1002-0306.2024120214.
LEI Yimimg, LI Jiaqi, BI Shengyun, et al. Effects of Ultra-high Pressure Treatment on the Physicochemical Properties of Pea Protein[J]. Science and Technology of Food Industry, 2025, 46(24): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024120214.
Citation: LEI Yimimg, LI Jiaqi, BI Shengyun, et al. Effects of Ultra-high Pressure Treatment on the Physicochemical Properties of Pea Protein[J]. Science and Technology of Food Industry, 2025, 46(24): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024120214.

超高压处理对豌豆蛋白物化特性的影响

Effects of Ultra-high Pressure Treatment on the Physicochemical Properties of Pea Protein

  • 摘要: 为了改善豌豆蛋白的品质特性,探究超高压改性对豌豆蛋白物化特性的影响,扩大豌豆蛋白的应用范围。本文以豌豆蛋白为研究对象,采用不同强度的超高压(100 MPa、15 min;300 MPa、15 min;600 MPa、15 min)处理,通过对其溶解度、亚基组成、粒径和电位、二级结构、微观结构和总巯基含量等进行测定,分析对其物化特性的差异。结果表明:与对照样相比,100 MPa超高压处理改变了豌豆蛋白的空间构象,分子粒径从176.83 nm降低到143.37 nm;蛋白溶液黏度降低,亲水性增强,蛋白的溶解度、电位值和总巯基没有显著性变化,溶液稳定性增强,但未改变亚基组成分布,未造成蛋白完全变性。而300 MPa和600 MPa超高压处理后,改变了蛋白表面电荷分布,降低了静电斥力,增大了蛋白的聚集程度,导致蛋白粒径增加,但不超过对照样;蛋白溶液黏度增加,疏水性增强,蛋白溶液的溶解度下降为74.59%和56.03%,电位绝对值显著降低,蛋白分子的二级结构更加有序,蛋白聚集趋势增强,溶液稳定性下降,总巯基含量显著下降,使蛋白发生部分变性。综上所述,豌豆蛋白的结构和物化特性因静水压强不同而存在差异性,本研究以期为豌豆蛋白在食品加工中的应用提供参考。

     

    Abstract: This study investigated pea protein subjected to different intensities of ultrahigh pressure (100 MPa for 15 min, 300 MPa for 15 min, and 600 MPa for 15 min) and analyzed the changes in its physicochemical properties, including solubility, subunit composition, particle size and zeta potential, secondary structure, microstructure, and total thiol content, to enhance its quality and expand its application range. Results indicated that in contrast to the control treatment, the 100 MPa ultrahigh-pressure treatment altered the spatial conformation of pea protein, reducing the molecular particle size of pea protein from 176.83 nm to 143.37 nm. The pea protein solution exhibited decreased viscosity and increased hydrophilicity, and no significant changes in its solubility, zeta potential, or total thiol content were observed. Solution stability improved, whereas subunit composition distribution remained unchanged, and the protein did not undergo complete denaturation. After treatment at 300 and 600 MPa, the surface charge distribution of the protein changed, reducing electrostatic repulsion and increasing the aggregation of protein molecules, leading to an increase in particle size. Nevertheless, the particle sizes of the samples treated at 300 and 600 MPa remained smaller than that of the control sample. The protein solution showed increased viscosity and enhanced hydrophobicity, and its solubility decreased to 74.59% and 56.03%. Absolute zeta potential significantly decreased, the order of the secondary structure of the protein increased, aggregation intensified, solution stability decreased, and total thiol content significantly decreased, resulting in partial protein denaturation. In conclusion, the structure and physicochemical properties of pea protein vary depending on the hydrostatic pressure applied. This study aims to provide a reference for the application of pea protein in food processing.

     

/

返回文章
返回