• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
李琳,孙慧慧,曹荣,等. 基于近红外光谱技术的南极磷虾品质快速评定[J]. 食品工业科技,2026,47(1):1−8. doi: 10.13386/j.issn1002-0306.2024120219.
引用本文: 李琳,孙慧慧,曹荣,等. 基于近红外光谱技术的南极磷虾品质快速评定[J]. 食品工业科技,2026,47(1):1−8. doi: 10.13386/j.issn1002-0306.2024120219.
LI Lin, SUN Huihui, CAO Rong, et al. Rapid Quality Assessment of Antarctic Krill Based on Near-Infrared Spectroscopy[J]. Science and Technology of Food Industry, 2026, 47(1): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024120219.
Citation: LI Lin, SUN Huihui, CAO Rong, et al. Rapid Quality Assessment of Antarctic Krill Based on Near-Infrared Spectroscopy[J]. Science and Technology of Food Industry, 2026, 47(1): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024120219.

基于近红外光谱技术的南极磷虾品质快速评定

Rapid Quality Assessment of Antarctic Krill Based on Near-Infrared Spectroscopy

  • 摘要: 为实现南极磷虾(Euphausia superba)品质的快速评定,本研究将近红外光谱技术(Near infrared spectroscopy,NIRS)与偏最小二乘法(Partial least squares,PLS)相结合,构建用于快速预测磷虾体内非蛋白氮(Non-protein nitrogen,NPN)含量和挥发性盐基氮(Total volatile base nitrogen,TVB-N)含量的近红外定量分析模型。采集近红外光谱后,通过比较决定系数(Coefficient of determination,R2)、校正标准偏差(Root mean square error of calibration,RMSEC)、预测标准偏差(Root mean square error of prediction,RMSEP)等模型的评价参数,选取近红外光谱定量分析模型的最佳预处理方式、特征光谱范围以及主因子数。结果显示,NPN含量模型的最佳预处理方法为多元散射校正(Multiplicative signal correction,MSC),其特征光谱范围为8887.1~7774.2 cm−1;TVB-N含量模型则采用MSC与卷积平滑(Savitzky-Golay smoothing,SG)相结合的方式进行预处理,建模范围为全波段。两个定量模型的主因子数均为5。经模型的优化与外部验证,最终构建的PLS最优模型如下:NPN含量近红外定量分析模型的R2为0.9384,RMSEC为0.279,RMSEP为0.443;TVB-N含量近红外定量分析模型的R2为0.8685,RMSEC为3.800,RMSEP为4.070。研究结果表明,两个模型均具有良好的预测精度(R2>0.85)和稳定性,其中NPN定量分析模型的预测能力优于TVB-N定量分析模型。综上,本研究基于NIRS与PLS构建的定量分析模型能够有效预测南极磷虾体内的NPN和TVB-N含量,为南极磷虾的品质评价提供了可靠的技术支持,满足快速评定的实际应用需求。

     

    Abstract: The aim of this study was to develop a rapid quality assessment method for Antarctic krill (Euphausia superba) by integrating near-infrared spectroscopy (NIRS) with partial least squares (PLS) regression. Quantitative models were established to predict two critical quality indicators: non-protein nitrogen (NPN) and total volatile base nitrogen (TVB-N) contents. Following spectral acquisition, the key model parameters, including the preprocessing methods, characteristic spectral ranges, and principal factor numbers, were systematically optimized. Model performance was evaluated using the coefficient of determination (R2), root mean square error of calibration (RMSEC), and root mean square error of prediction (RMSEP). For the NPN model, multiplicative scatter correction (MSC) was selected as the optimal preprocessing method, with a characteristic spectral range of 8887.1 cm-1 to 7774.2 cm-1. The TVB-N model utilized a combination of MSC and Savitzky-Golay smoothing (SG), with the full spectral band employed for modeling. Both models adopted five principal factors. After optimization and external validation, the optimized NPN model demonstrated a robust performance, with R2=0.9384, RMSEC=0.279, and RMSEP=0.443, whereas the TVB-N model achieved R2=0.8685, RMSEC=3.800, and RMSEP=4.070. These results indicate that both models exhibit high predictive accuracy (R2>0.85) and stability, with the NPN model outperforming the TVB-N model in terms of predictive capability. In conclusion, quantitative analysis models constructed by combining NIRS and PLS can predict the NPN and TVB-N content in Antarctic krill. This approach provides a rapid solution for Antarctic krill quality assessment, addressing the growing demand for the efficient monitoring of Antarctic krill resource utilization.

     

/

返回文章
返回