• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
王佳,任青兮,刘双平,等. 基于广泛靶向代谢组学、网络药理学和分子对接研究牡蛎抗疲劳作用机制[J]. 食品工业科技,2026,47(1):1−10. doi: 10.13386/j.issn1002-0306.2025010135.
引用本文: 王佳,任青兮,刘双平,等. 基于广泛靶向代谢组学、网络药理学和分子对接研究牡蛎抗疲劳作用机制[J]. 食品工业科技,2026,47(1):1−10. doi: 10.13386/j.issn1002-0306.2025010135.
WANG Jia, REN Qingxi, LIU Shuangping, et al. Anti-fatigue Mechanism of Crassostrea gigas was Studied Based on Widely Targeted Metabolomics, Network Pharmacology and Molecular Docking[J]. Science and Technology of Food Industry, 2026, 47(1): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2025010135.
Citation: WANG Jia, REN Qingxi, LIU Shuangping, et al. Anti-fatigue Mechanism of Crassostrea gigas was Studied Based on Widely Targeted Metabolomics, Network Pharmacology and Molecular Docking[J]. Science and Technology of Food Industry, 2026, 47(1): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2025010135.

基于广泛靶向代谢组学、网络药理学和分子对接研究牡蛎抗疲劳作用机制

Anti-fatigue Mechanism of Crassostrea gigas was Studied Based on Widely Targeted Metabolomics, Network Pharmacology and Molecular Docking

  • 摘要: 本研究综合运用广泛靶向代谢组学、网络药理学以及分子对接技术,探究牡蛎在抗疲劳方面的潜在作用机制,为牡蛎的科学应用提供坚实的理论基础和实验依据。采用超高效液相色谱-电喷雾-串联三重四级杆/线性离子阱质谱(UPLC-ESI-QTRAP-MS/MS)系统,并结合数据库对牡蛎体外模拟消化产物进行广泛靶向代谢组学分析,获取牡蛎在消化过程中的成分转化信息。利用PubChem、Siwss Target Prediction、GeneCards等数据库及Cytoscape等软件对牡蛎活性成分进行抗疲劳的网络药理学分析,构建牡蛎“活性成分-作用靶点”网络。随后基于分子对接技术对核心靶点进行验证。共鉴定出牡蛎中17类1231种活性成分,识别出具有潜在抗疲劳的活性成分181个、交集靶点106个,主要包括1,5-戊二胺、色胺、4-叔辛基苯酚等,核心靶点包括雌激素受体1(Estrogen receptor 1,ESR1)、表皮生长因子受体(Epidermal growth factor receptor,EGFR)、过氧化物酶体增殖物激活受体-γ(Peroxisome proliferatoractivated receptor gamma,PPARG)等。信号通路富集分析显示,钙信号通路、神经活性配体-受体相互作用、PI3K/Akt信号通路等为牡蛎抗疲劳的关键信号通路。分子对接结果进一步验证了牡蛎关键活性成分与核心靶点的良好结合。牡蛎可能通过多成分、多靶点、多通路协同作用发挥抗疲劳效果。本研究为深入探讨牡蛎的有效成分及其分子作用机制提供了理论支撑,为牡蛎的进一步研究和应用奠定了坚实基础。

     

    Abstract: This study comprehensively applied a diverse array of widely targeted metabolomics, network pharmacology, and molecular docking techniques to delve into the potential anti-fatigue mechanism of Crassostrea gigas. The aim was to provide a robust theoretical and experimental foundation for the scientific utilization of Crassostrea gigass. Utilizing an ultra-high performance liquid chromatography-electrospray ionization-triple quadrupole/linear ion trap mass spectrometry (UPLC-ESI-QTRAP-MS/MS) system and database, we conducted an extensive targeted metabolomics analysis of the simulated digestive products of Crassostrea gigas in vitro. This analysis aimed to obtain component transformation information during Crassostrea gigas digestion. Network pharmacological analysis of the anti-fatigue properties of Crassostrea gigas active ingredients was carried out using PubChem, Swiss Target Prediction, GeneCards, and Cytoscape software. From this, we constructed a network map of "active ingredients-target" for Crassostrea gigas. Subsequently, we verified the core targets using molecular docking technology. We identified 1231 active ingredients in 17 categories of Crassostrea gigas. Among these, 106 intersection targets with potential anti-fatigue effects were pinpointed, involving 181 key active ingredients, primarily including 1,5-pentenediamine, tryptamine, 4-tert-octylphenol, etc. Core targets included Estrogen receptor 1 (ESR1), Epidermal growth factor receptor (EGFR), and Peroxisome proliferator-activated receptor gamma (PPARG). Signal pathway enrichment analysis revealed that the calcium signaling pathway, neuroactive ligand-receptor interaction, and PI3K-Akt signaling pathway were pivotal signaling pathways for fatigue resistance in Crassostrea gigas. Molecular docking results further verified the good combination of key active ingredients and core targets of oyster. Crassostrea gigass may exert an anti-fatigue effect through a synergistic action involving multiple components, targets, and pathways. This study offers theoretical support for further exploration of the active components and molecular mechanisms of Crassostrea gigas, paving a solid foundation for subsequent research and application.

     

/

返回文章
返回