• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
石婷,许诗咏,王茹,等. 紫外-近红外光谱融合结合化学计量学方法鉴别“互助”青稞酒[J]. 食品工业科技,2026,47(3):1−8. doi: 10.13386/j.issn1002-0306.2025010296.
引用本文: 石婷,许诗咏,王茹,等. 紫外-近红外光谱融合结合化学计量学方法鉴别“互助”青稞酒[J]. 食品工业科技,2026,47(3):1−8. doi: 10.13386/j.issn1002-0306.2025010296.
SHI Ting, XU Shiyong, WANG Ru, et al. Identification of Chinese Huzhu Qingke Liquor by UV-NIR Spectral Fusion Combined with Chemometrics Methods[J]. Science and Technology of Food Industry, 2026, 47(3): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2025010296.
Citation: SHI Ting, XU Shiyong, WANG Ru, et al. Identification of Chinese Huzhu Qingke Liquor by UV-NIR Spectral Fusion Combined with Chemometrics Methods[J]. Science and Technology of Food Industry, 2026, 47(3): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2025010296.

紫外-近红外光谱融合结合化学计量学方法鉴别“互助”青稞酒

Identification of Chinese Huzhu Qingke Liquor by UV-NIR Spectral Fusion Combined with Chemometrics Methods

  • 摘要: 本研究旨在开发一种快速、准确的判别方法,以实现对‘互助’青稞酒的鉴别,为青稞酒的质量控制与真伪鉴别提供可靠的技术支持。首先利用紫外光谱(Ultraviolet Spectrum,UV)和近红外光谱(Near-Infrared Spectroscopy,NIR)研究了‘互助’青稞酒(CHQL)、其它品牌青稞酒(OBQL)和非青稞原料白酒(NQBL)的光谱特性。然后基于UV、NIR单光谱和UV-NIR融合光谱建立偏最小二乘判别分析(Partial Least Square-Discriminant Analysis,PLS-DA)、支持向量机(Support Vector Machine,SVM)和随机森林(Random Forest,RF)三种分类模型。并通过间隔偏最小二乘法(Interval Partial Least Squares,iPLS)、变量投影重要性(Variable Importance of Projection,VIP)、竞争自适应重加权采样(Competitive Adaptive Reweighted Sampling,CARS)等算法选择特征变量。结果表明:融合光谱能够利用两种光谱的互补信息,提高模型判别能力;此外,特征变量筛选方法进一步优化了模型性能,降低模型复杂度,其中采用VIP方法筛选的78个最优波长建立的RF模型的分类和预测效果最佳,在训练集和测试集上的准确率都达到100%。综上所述,数据融合策略与化学计量学方法相结合能够有效增强模型性能,实现“互助”青稞酒的快速判别。

     

    Abstract: This study aims to develop a quick and accurate discrimination method to realize the identification of Chinese Huzhu Qingke Liquor (CHQL), and to provide reliable technical support for the quality control and authenticity identification of Qingke liquor. First, ultraviolet spectrum (UV) and near-infrared spectroscopy (NIR) were used to examine the spectral properties of CHQL, Other Brand Qingke Liquor (OBQL), and Non-Qingke Based Liquor (NQBL). Then, partial least square-discriminant analysis (PLS-DA), support vector machine (SVM), and random forest (RF) were established using UV, NIR single spectrum and UV-NIR fusion spectrum. Additionally, interval partial least squares (iPLS), variable importance of projection (VIP), and competitive adaptive reweighted sampling (CARS) were used respectively for extracting feature variables from spectra. The results showed that the fusion spectra could complement each other and improve the performance of the classification model. The feature variable screening method further improved the model performance and reduced the model complexity. The RF model constructed using the 78 optimal wavelengths filtered by the VIP technique had the best classification and prediction results, with 100% accuracy on both the training and test sets. In summary, the combination of data fusion strategy and chemometrics method can effectively enhance the model performance and realize the rapid discriminant analysis of Huzhu Qingke liquor.

     

/

返回文章
返回