• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
喻好好,付兴飞,毕晓菲,等. 广泛靶向代谢组学分析不同蜜处理加工方法对小粒咖啡非挥发性化合物的影响[J]. 食品工业科技,2026,47(3):1−11. doi: 10.13386/j.issn1002-0306.2025020063.
引用本文: 喻好好,付兴飞,毕晓菲,等. 广泛靶向代谢组学分析不同蜜处理加工方法对小粒咖啡非挥发性化合物的影响[J]. 食品工业科技,2026,47(3):1−11. doi: 10.13386/j.issn1002-0306.2025020063.
YU Haohao, FU Xingfei, BI Xiaofei, et al. Widely Targeted Metabolomics Analysis of Effects of Different Honey Treatment Processing Methods on Non-volatile Compounds in Yunnan Arabica Coffee[J]. Science and Technology of Food Industry, 2026, 47(3): 1−11. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2025020063.
Citation: YU Haohao, FU Xingfei, BI Xiaofei, et al. Widely Targeted Metabolomics Analysis of Effects of Different Honey Treatment Processing Methods on Non-volatile Compounds in Yunnan Arabica Coffee[J]. Science and Technology of Food Industry, 2026, 47(3): 1−11. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2025020063.

广泛靶向代谢组学分析不同蜜处理加工方法对小粒咖啡非挥发性化合物的影响

Widely Targeted Metabolomics Analysis of Effects of Different Honey Treatment Processing Methods on Non-volatile Compounds in Yunnan Arabica Coffee

  • 摘要: 为探究不同蜜处理加工方法中非挥发性化合物的代谢差异,采用UPLC-MS/MS广泛靶向代谢组学对不同脱胶率下(CH,脱胶率100%;WH,脱胶率约80%;YH,脱胶率为40%~50%;RH,脱胶率为20%~25%;BH,脱胶率0%)的咖啡生豆进行系统分析。结果显示,在5种不同脱胶率处理的咖啡生豆中共鉴定到1682种代谢物,多元统计分析表明脱胶率明显改变了非挥发性化合物的代谢轮廓。以VIP>1,log2|FC|>1和P<0.05为阈值,筛选得到192种差异代谢物,其中氨基酸及其衍生物、有机酸、酚酸以及糖类是最主要的代谢物类别,在影响咖啡豆风味特性方面起着重要的作用。通过趋势分析,鉴定到93种非挥发性化合物的相对含量随脱胶率的降低而持续增加。京都基因与基因组百科全书(KEGG)结果显示,这些化合物在磷酸肌醇代谢、戊糖与葡萄糖酸的相互转化、半乳糖代谢、氨基糖和核苷酸糖代谢、链霉素的生物合成、吲哚生物碱生物合成以及碳水化合物消化吸收中显著富集(P<0.05)。根据最小二乘判别分析(PLS-DA)模型,确定了以N-乙酰氨基酸为主的10种潜在标志性化合物以区分不同脱胶率的蜜处理方法。研究结果揭示了咖啡果胶对咖啡豆的非挥发性化合物的影响,为通过发酵控制提升咖啡风味特性提供了理论参考。

     

    Abstract: To investigate the metabolic differences in non-volatile compounds across honey processing methods, UPLC-MS/MS-based widely targeted metabolomics was employed to analyze green coffee beans systematically under different mucilage removal rates. The results revealed that 1682 metabolites were identified in green coffee beans subjected to five mucilage removal rate treatments; multivariate statistical analysis demonstrated that the removal rate significantly altered the metabolic profiles of non-volatile compounds. A total of 192 differential metabolites were screened using VIP>1, log2|FC|>1, and P<0.05 as thresholds. Among them, amino acids and their derivatives, organic acids, phenolic acids, and saccharides emerged as the most dominant metabolite categories, playing pivotal roles in influencing the flavor characteristics of coffee beans. Trend analysis detected 93 non-volatile compounds exhibiting progressively increased relative contents in correlation with decreasing mucilage removal rates. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results indicated that these compounds exhibited a significant enrichment (P<0.05) in inositol phosphate metabolism, pentose and glucuronate interconversions, galactose metabolism, amino sugar and nucleotide sugar metabolism, streptomycin biosynthesis, indole alkaloid biosynthesis, and carbohydrate digestion and absorption. Partial least squares-discriminant analysis (PLS-DA) model showed that ten potential marker compounds predominantly composed of N-acetyl amino acids were distinguished between honey processing methods with varying mucilage removal rates. The findings revealed the regulatory impact of coffee mucilage on the non-volatile compound profiles in coffee beans, providing a theoretical foundation for optimizing coffee flavor attributes through fermentation control strategies.

     

/

返回文章
返回