• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
吴江超,郭金喜,徐杰,等. 基于LC-MS非靶向代谢组学分析受沙门氏菌污染的椒麻鸡标志代谢物J. 食品工业科技,2026,47(4):1−11. doi: 10.13386/j.issn1002-0306.2025020186.
引用本文: 吴江超,郭金喜,徐杰,等. 基于LC-MS非靶向代谢组学分析受沙门氏菌污染的椒麻鸡标志代谢物J. 食品工业科技,2026,47(4):1−11. doi: 10.13386/j.issn1002-0306.2025020186.
WU Jiangchao, GUO Jinxi, XU Jie, et al. Analysis on Marker Metabolites of Pepper Chicken Contaminated by Salmonella Based on LC-MS Non-targeted MetabonomicsJ. Science and Technology of Food Industry, 2026, 47(4): 1−11. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2025020186.
Citation: WU Jiangchao, GUO Jinxi, XU Jie, et al. Analysis on Marker Metabolites of Pepper Chicken Contaminated by Salmonella Based on LC-MS Non-targeted MetabonomicsJ. Science and Technology of Food Industry, 2026, 47(4): 1−11. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2025020186.

基于LC-MS非靶向代谢组学分析受沙门氏菌污染的椒麻鸡标志代谢物

Analysis on Marker Metabolites of Pepper Chicken Contaminated by Salmonella Based on LC-MS Non-targeted Metabonomics

  • 摘要: 为了鉴定沙门氏菌污染椒麻鸡后的标志代谢物,采用液相色谱-质谱联用(Liquid chromatography-mass spectro,LC-MS)非靶向代谢组学分析了沙门氏菌污染组和对照组椒麻鸡的代谢物图谱,并采用随机森林回归分析和逐步多元线性回归用于鉴定沙门氏菌污染椒麻鸡后的关键标志代谢物。在污染度过程中,共鉴定分析了1475种不同代谢物,正负离子模式下分别鉴定出864种和611种代谢物;通过随机森林回归分析选择正负离子模式各前20种作为潜在标志代谢物;受试者工作特征曲线(Receiver operating characteris,ROC)分析表明,采用随机森林回归分析鉴定的脒基牛磺酸、牛磺胆酸、5b-鲤胆甾醇硫酸盐、尿苷-5'-单磷酸生物标志物显示与沙门氏菌污染的椒麻鸡具有强相关性,其中尿苷-5'-单磷酸含量明显增高,具有很强的区分受沙门氏菌污染的椒麻鸡和新鲜椒麻鸡的能力,可作为沙门氏菌污染椒麻鸡后的标志代谢物。本研究为开发一种创新方法识别和检测由沙门氏菌引起的食源性污染提供了理论基础。

     

    Abstract: To identify the marker metabolites of pepper chicken contaminated by Salmonella, liquid chromatography-mass spectrometry (LC-MS) was used to analyze the metabolite profiles of pepper chicken contaminated by Salmonella and control group, and random forest regression analysis and stepwise multiple linear regression were used to identify the key marker metabolites of pepper chicken contaminated by Salmonella. In the process of pollution degree, 1475 different metabolites were identified and analyzed, then 864 and 611 metabolites were identified in positive and negative ion mode respectively. The top 20 kinds of positive and negative ion patterns were selected as potential marker metabolites by random forest regression analysis. Receiver operating characteris curve (ROC) analysis showed that the biomarkers of amidinotaurine, taurocholic acid, 5b-carp cholesteryl sulfate and uridine -5'- monophosphate identified by random forest regression analysis showed a strong correlation with Salmonella-contaminated pepper chicken, in which the content of uridine -5'- monophosphate was significantly increased, which had a strong ability to distinguish Salmonella-contaminated pepper chicken from fresh pepper chicken. It could be used as a marker metabolite after Salmonella contamination of pepper chicken. The findings of this study could provide a theoretical basis for developing an innovative method to identify and detect food-borne pollution caused by Salmonella.

     

/

返回文章
返回