• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
王怡博,庹先国,张贵宇,等. 近红外光谱结合改进的排列组合总体分析方法鉴别浓香型白酒基酒等级[J]. 食品工业科技,2026,47(2):1−9. doi: 10.13386/j.issn1002-0306.2025020239.
引用本文: 王怡博,庹先国,张贵宇,等. 近红外光谱结合改进的排列组合总体分析方法鉴别浓香型白酒基酒等级[J]. 食品工业科技,2026,47(2):1−9. doi: 10.13386/j.issn1002-0306.2025020239.
WANG Yibo, TUO Xianguo, ZHANG Guiyu, et al. Near-infrared Spectroscopy Combined with Improved Permutation Combination Population Analysis for Identifying Base Liquor Grades of Nongxiangxing Baijiu[J]. Science and Technology of Food Industry, 2026, 47(2): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2025020239.
Citation: WANG Yibo, TUO Xianguo, ZHANG Guiyu, et al. Near-infrared Spectroscopy Combined with Improved Permutation Combination Population Analysis for Identifying Base Liquor Grades of Nongxiangxing Baijiu[J]. Science and Technology of Food Industry, 2026, 47(2): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2025020239.

近红外光谱结合改进的排列组合总体分析方法鉴别浓香型白酒基酒等级

Near-infrared Spectroscopy Combined with Improved Permutation Combination Population Analysis for Identifying Base Liquor Grades of Nongxiangxing Baijiu

  • 摘要: 白酒基酒中含有种类繁多、关系复杂的微量成分,如何快速简便的预测其等级具有重要意义。为实现快速准确的鉴别,并考虑多组分样本物质间协调关系,降低计算复杂度,在近红外光谱数据基础上,提出了一种改进的排列组合总体分析(improved permutation combination population analysis,imPCPA)特征选择方法。研究基于浓香型白酒4种等级基酒共687个样品,建立了近红外光谱白酒基酒等级判别模型,采用了组合特征选择策略对光谱点进行筛选。先使用区间偏最小二乘法(interval partial least squares,IPLS)对预处理后的光谱进行无信息变量的剔除,再使用imPCPA对选取的区间进行波点筛选,最后建立极端梯度提升树(established extreme gradient boosting,XGBoost)分类模型。最终筛选出了32个特征波点,相比于改进之前的算法在计算量上减少了80%,分类模型预测集准确率中位数达95.65%。研究结果表明,该方法缓解了现有的感官品评方法进行酒类分析带来的主观性强、重现性差的特点,实现了多组分样本中成分间的协调作用的捕捉,特征选择结果解释性好,为白酒基酒等级的快速检测提供了参考。

     

    Abstract: Base liquor of Baijiu contains a wide variety of trace components with complex interactions. How to predict its grade rapidly and simply was of great importance. To achieve rapid and accurate identification while accounting for interactions between multi-component substances and reducing computational complexity, this study developed an improved permutation combination population analysis (imPCPA) method for feature selection based on near-infrared spectroscopy data. This study established a near-infrared spectroscopy (NIRS) model to discriminate the quality grades of base liquors in Nongxiangxing Baijiu. The model was developed using 687 samples from four quality grades. A combined feature selection strategy was applied to optimize spectral wavelength selection. The initial screening applied interval partial least squares (iPLS) to remove uninformative variables from preprocessed spectra. The improved permutation combination population analysis (imPCPA) further optimized wave point selection within the retained spectral intervals. Finally, constructed an extreme gradient boosting (XGBoost) classification model for grade prediction. The final selection identified 32 characteristic wavelength points. Compared to the original algorithm, the improved method reduced computational time by 80%. The median prediction accuracy of the classification model reached 95.65% on the prediction set. The results demonstrate that this method addresses key limitations of conventional sensory evaluation, including strong subjectivity and poor reproducibility in liquor analysis. It effectively captures synergistic interactions among multi-component substances while maintaining interpretable feature selection. The approach provides a reliable reference for rapid grade assessment of Baijiu base liquors.

     

/

返回文章
返回