• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
李顺峰,陈云莉,兰雪怡,等. 对羟基苯甲酸对β-葡萄糖苷酶的激活效应及其互作关系J. 食品工业科技,2026,47(4):1−8. doi: 10.13386/j.issn1002-0306.2025020266.
引用本文: 李顺峰,陈云莉,兰雪怡,等. 对羟基苯甲酸对β-葡萄糖苷酶的激活效应及其互作关系J. 食品工业科技,2026,47(4):1−8. doi: 10.13386/j.issn1002-0306.2025020266.
Li Shunfeng, CHEN Yunli, LAN Xueyi, et al. Effect of p-Hydroxybenzoic Acid on the Activation of β-Glucosidase Activity and the Interaction between ThemJ. Science and Technology of Food Industry, 2026, 47(4): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2025020266.
Citation: Li Shunfeng, CHEN Yunli, LAN Xueyi, et al. Effect of p-Hydroxybenzoic Acid on the Activation of β-Glucosidase Activity and the Interaction between ThemJ. Science and Technology of Food Industry, 2026, 47(4): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2025020266.

对羟基苯甲酸对β-葡萄糖苷酶的激活效应及其互作关系

Effect of p-Hydroxybenzoic Acid on the Activation of β-Glucosidase Activity and the Interaction between Them

  • 摘要: 为探究酚酸对β-葡萄糖苷酶活性的影响,通过圆二色谱、分子对接等方法,分析了不同质量浓度(0~0.5 g/L)对羟基苯甲酸(p-hydroxybenzoic acid,PHBA)对β-葡萄糖苷酶的激活机制,重点研究了酶动力学和分子相互作用。结果表明,PHBA显著提高了β-葡萄糖苷酶的活性,且呈浓度依赖性模式。二级结构分析发现,在0.5 g/L的PHBA作用下,与对照组相比,α-螺旋含量显著降低了52.14%(P<0.05),而β-折叠、β-转角和无规则卷曲结构分别增加了90.20%、27.24%和50.56%,表明β-葡萄糖苷酶的活性位点可能位于α-螺旋内。荧光猝灭结果表明,PHBA与β-葡萄糖苷酶可能有1个或者1类结合位点,二者结合是自发的。分子相互作用力显示,氢键、范德华力以及疏水相互作用是稳定PHBA-β-葡萄糖苷酶复合物的主要作用力。分子动力学模拟进一步验证了PHBA-β-葡萄糖苷酶复合物在100 ns轨迹中的结构稳定性(RMSD<0.4 nm),证实了PHBA作为β-葡萄糖苷酶激活剂的潜力,为富含酚酸的果蔬发酵产品中β-葡萄糖苷酶活性提升及功能性成分开发提供了理论依据。

     

    Abstract: To investigate the effect of phenolic acids on the activity of β-glucosidase, this study systematically evaluated the activation mechanism of p-hydroxybenzoic acid (PHBA) at varying concentrations (0~0.5g/L) through circular dichroism spectroscopy and molecular docking, with a focus on enzyme conformational dynamics and molecular interactions. The results showed that PHBA significantly enhanced β-glucosidase activity in a concentration-dependent manner. Secondary structural analysis revealed that the content of α-helix significantly decreased by 52.14% (P<0.05), while β-sheet, β-turn, and random coil structures increased by 90.20%, 27.24%, and 50.56%, respectively, at 0.5 g/L PHBA compared to the control group. These structural shifts suggestted that the enzyme’s active site might reside within α-helix regions. Fluorescence quenching assays confirmed spontaneous binding between PHBA and β-glucosidase, with one or one class of binding sites identified. Molecular interaction analyses revealed that hydrogen bonding, van der Waals forces, and hydrophobic interactions predominantly stabilized the PHBA-enzyme complex. Molecular dynamics simulations further validated the structural stability of the PHBA-β-glucosidase complex over 100 ns trajectories (RMSD<0.4 nm), confirming PHBA as a potent β-glucosidase activator. This study elucidates the molecular basis of PHBA-driven enzyme activation and provides a theoretical foundation for enhancing β-glucosidase activity in phenolic acid-rich fermented fruit and vegetable products.

     

/

返回文章
返回