• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
熊丽,赵德智,王丽萍,等. 葛根异黄酮类化合物对α-淀粉酶的抑制作用及分子机制[J]. 食品工业科技,2025,46(24):1−8. doi: 10.13386/j.issn1002-0306.2025030085.
引用本文: 熊丽,赵德智,王丽萍,等. 葛根异黄酮类化合物对α-淀粉酶的抑制作用及分子机制[J]. 食品工业科技,2025,46(24):1−8. doi: 10.13386/j.issn1002-0306.2025030085.
XIONG Li, ZHAO Dezhi, WANG Liping, et al. Inhibitory Effects and Molecular Mechanisms of Pueraria Isoflavones on α-Amylase[J]. Science and Technology of Food Industry, 2025, 46(24): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2025030085.
Citation: XIONG Li, ZHAO Dezhi, WANG Liping, et al. Inhibitory Effects and Molecular Mechanisms of Pueraria Isoflavones on α-Amylase[J]. Science and Technology of Food Industry, 2025, 46(24): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2025030085.

葛根异黄酮类化合物对α-淀粉酶的抑制作用及分子机制

Inhibitory Effects and Molecular Mechanisms of Pueraria Isoflavones on α-Amylase

  • 摘要: 为研究葛根中主要异黄酮类化合物抑制α-淀粉酶的活性及分子机制,采用抑制动力学方法评价葛根异黄酮对α-淀粉酶的抑制作用;通过荧光光谱法、同步荧光及圆二色谱法观察葛根异黄酮对α-淀粉酶空间结构和稳定性的影响;利用分子对接技术探究葛根异黄酮与α-淀粉酶之间的分子相互作用。结果表明,8-C糖苷取代的葛根素(IC50=0.489±0.096 mg/mL)和7-O糖苷结构的大豆苷(IC50=1.216±0.152 mg/mL)均通过自发与酶结合发挥混合型抑制作用,氢键与范德华力为关键驱动力。两者与酶结合后明显诱导Trp/Tyr残基微环境极性增强及二级结构重排,导致酶构象松散化。葛根素的8-C糖苷基可精准嵌入酶活性中心,通过形成氢键网络,并协同π-π堆积及疏水作用增强结合稳定性;而大豆苷因7-O糖苷基空间位阻导致B环脱离结合位点,削弱相互作用。本研究解析了葛根异黄酮抑制α-淀粉酶的分子机制,初步明确8-糖苷基取代异黄酮的结构优势及其对α-淀粉酶活性口袋的精准靶向性,可为对葛根异黄酮类化合物降糖功能活性的认识提供新见解。

     

    Abstract: To investigate the α-amylase inhibitory activity and molecular mechanisms of major isoflavones from Pueraria lobata, inhibitory kinetics was employed to evaluate their inhibitory effects on α-amylase. Fluorescence spectroscopy, synchronous fluorescence, and circular dichroism were utilized to observe the spatial structure and stability changes of α-amylase upon binding with these isoflavones. Molecular docking was further applied to explore their intermolecular interactions. Results demonstrated that both puerarin (8-C-glycoside substitution, IC50=0.489±0.096 mg/mL) and daidzin (7-O-glycoside substitution, IC50=1.216±0.152 mg/mL) spontaneously bound to the enzyme via mixed-type inhibition, driven primarily by hydrogen bonds and van der Waals forces. Their binding significantly enhanced the polarity of the Trp/Tyr residue microenvironment and induced secondary structural rearrangements, leading to a loosened enzyme conformation. The 8-C-glycosyl group of puerarin precisely embedded into the enzyme's active center, forming a hydrogen bonding network synergized with π-π stacking and hydrophobic interactions to enhance binding stability. In contrast, the 7-O-glycosyl group of daidzin caused steric hindrance, displacing its B-ring from the binding pocket and weakening interactions. This study elucidated the molecular mechanism of Pueraria lobata isoflavones in inhibiting α-amylase, highlighting the structural superiority of 8-glycoside substituted isoflavones in targeting the enzyme's active pocket. These findings provide novel insights into the hypoglycemic functional activities of Pueraria lobata isoflavones.

     

/

返回文章
返回