• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • 首都科技期刊卓越行动计划
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
苗欢,侯丽媛,耿亚慧,等. 真空脉动干燥对苹果片干燥特性及品质的影响J. 食品工业科技,2026,47(6):1−10. doi: 10.13386/j.issn1002-0306.2025030384.
引用本文: 苗欢,侯丽媛,耿亚慧,等. 真空脉动干燥对苹果片干燥特性及品质的影响J. 食品工业科技,2026,47(6):1−10. doi: 10.13386/j.issn1002-0306.2025030384.
MIAO Huan, HOU Liyuan, GENG Yahui, et al. Effects of Vacuum Pulsation Drying on Drying Characteristics and Quality of Apple SlicesJ. Science and Technology of Food Industry, 2026, 47(6): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2025030384.
Citation: MIAO Huan, HOU Liyuan, GENG Yahui, et al. Effects of Vacuum Pulsation Drying on Drying Characteristics and Quality of Apple SlicesJ. Science and Technology of Food Industry, 2026, 47(6): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2025030384.

真空脉动干燥对苹果片干燥特性及品质的影响

Effects of Vacuum Pulsation Drying on Drying Characteristics and Quality of Apple Slices

  • 摘要: 为提高苹果片的干燥效率和品质,该研究将真空脉动干燥技术应用于苹果片干燥,探究在不同干燥温度(55、60、65和70 ℃)、常压保持时间(2、4、6、8和10 min)和真空保持时间(5、10、15、20和25 min)条件下,样品的干燥特性、复水比、色泽、维生素C(vitamin C,VC)、总黄酮含量等指标的变化规律。结果表明苹果片的干燥时间随着干燥温度的升高而缩短,随着常压时间延长而延长,随着真空时间的延长呈现先缩短后增加的趋势,有效水分扩散系数为1.69×10−11~3.63×10−11 m2/s。干燥过程中,苹果片内部温度呈阶梯式波动,常压阶段温度迅速上升,真空阶段因水分蒸发吸热导致温度下降。干燥温度、真空时间和常压时间对复水比、色泽、总黄酮含量和VC含量(P<0.05)均有显著性影响。复水比和VC含量随着干燥温度的升高呈现逐渐下降的趋势。在干燥温度为60 ℃,常压保持时间为2 min,真空保持时间为10 min时综合评分最高,为0.73±0.01,该工艺条件下的干燥时间为288 min、总黄酮含量为9.21±0.48 mg/g、复水比为2.23±0.07、VC含量为1.36±0.02 mg/g、ΔΕ为24.65±1.94。本研究为优化真空脉动干燥苹果片的工艺参数提供了理论依据,有助于提高苹果片的生产质量和生产效率。

     

    Abstract: To improve the drying efficiency and quality of apple slices, we applied vacuum pulsation drying technology to the apple slice drying processes and explored changes in indicators such as drying characteristics, rehydration ratio, color, vitamin C (VC) content, and total flavonoid content under different drying temperatures (55, 60, 65, and 70 ℃), normal pressure holding times (2, 4, 6, 8, and 10 min), and vacuum holding times (5, 10, 15, 20, and 25 min). The apple slice drying time decreased with an increase in the drying temperature, increased with an increase in the normal pressure time, and first decreased and then increased with increasing vacuum holding time. The effective moisture diffusion coefficient was 1.69×10-11–3.63×10-11 m2/s. During the drying process, the internal temperature of the apple slices fluctuated in a stepwise manner, increasing rapidly during the normal pressure stage and then decreasing owing to heat absorption from water evaporation during the vacuum stage. The drying temperature, vacuum holding time, and normal pressure holding time had significant effects (P<0.05) on the rehydration ratio, color, total flavonoid content, and VC content. The rehydration ratio and VC content exhibited gradually decreasing trends with increasing drying temperatures. The comprehensive score was the highest (0.73±0.01) at a drying temperature of 60 ℃, normal pressure holding time of 2 min, and vacuum holding time of 10 min. Under these process conditions, the drying time, total flavonoid content, rehydration ratio, VC content, and ΔΕ were 288 min, 9.21±0.48 mg/g, 2.23±0.07, 1.36±0.02 mg/g, and 24.65±1.94, respectively. This study provides a theoretical basis for optimizing the process parameters of the drying of apple slices via vacuum pulsation and aids in improving their production quality and efficiency.

     

/

返回文章
返回